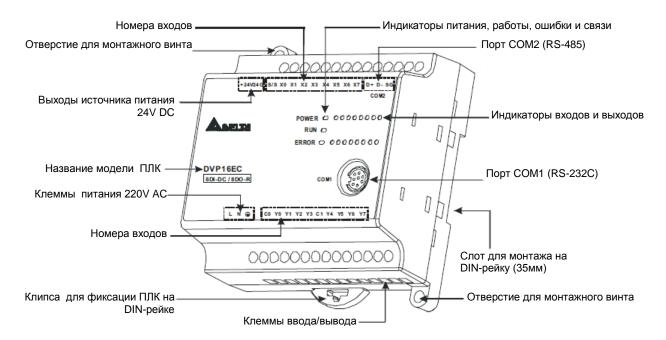
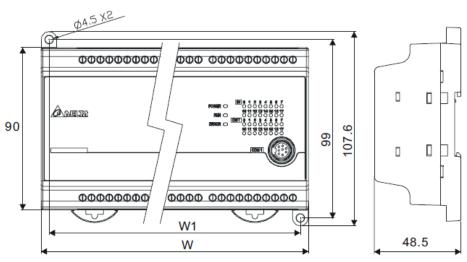


Программируемые логические контроллеры


Руководство по эксплуатации

Благодарим вас за выбор программируемого логического контроллера (далее по тексту, - контроллера или ПЛК) из серии Delta DVP-EC3. Данная серия включает центральные процессорные модули (MPU) с количеством точек ввода/вывода от 10 до 66. Модули расширения для контроллеров данной серии не предусмотрены.


- ✓ Данное руководство содержит электрические спецификации, информацию по установке и подключению, компоновке и габаритным размерам. Конструкция программы и набор прикладных инструкций контроллеров ЕСЗ аналогичны серии ЕS, поэтому для получения подробной информации по программированию можно обратиться к «Руководству по программированию контроллеров Delta DVP».
- ✓ Контроллеры DVP-EC3 выпускаются в прочном, но незащищенном корпусе, поэтому необходимо строго соблюдать требования к месту установки, которое должно быть свободным от пыли, влажности, электрических полей и вибраций. Также, необходимо обеспечить защиту устройства от доступа неквалифицированного персонала (т.е. шкаф должен запираться на специальный ключ). В противном случае может произойти необратимая порча изделия.
- ✓ Ни в коем случае не подсоединяйте к входам/выходам контроллера переменное напряжение питания. Перед подачей питания еще раз внимательно проверьте подключение. Не подсоединяйте никакие провода при поданном напряжении питания. В противном случае может произойти необратимая порча изделия. Убедитесь, что к клемме ☐ подсоединен провод заземления, с целью должной защиты устройства от помех.

• Компоновка и размеры изделия

Примечания.

- 1. На рис. приведена компоновка органов управления и индикации контроллера DVP16EC00R3.
- 2. Модели DVP60EC00R3/T3 оборудованы съемными клеммными блоками ввода/ вывода; у других моделей клеммы не съемные.
- 3. Модели DVP10EC00□3 и DVP14EC00□3 не имеют комм. порта COM2 (RS-485).

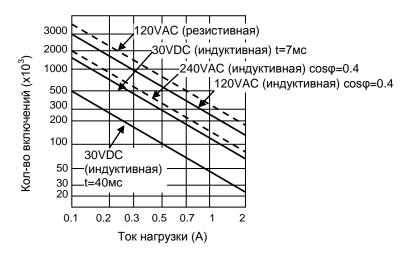
Размеры в мм.

Модель DVP	10EC00□3 14EC00□3 16EC00□3		24EC00□3 32EC00□3		60EC00□3	
W	95			150		240
W1	90.5			141		231

• Электрические спецификации

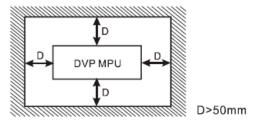
Модель DVP-	10EC00□3	14EC00□3	16EC00□3	24EC00□3	32EC00□3	60EC00□3			
Напряжение питания	100 ~ 240 VAC (-15 % +10 %); 50/60 Γ _{II} +/- 5 %								
Подключение	Съемные клеммные блоки в соответствие с Европейскими стандартами (шаг: 5мм)								
Условия включения	DVP-EC3 включается при напряжении питания выше 95100VAC и выключается при снижении напряжения ниже 70VAC. Работа продолжается в течение 10мс после выключения питания.								
Предохранитель электропитания	2 A/250 VAC								
Потребляемая мощность		12 VA		15.6	22.5 VA				
Ном. ток встроенного источника 24 VDC		200 мА		300	400 мА				
Защита встроенного источника 24 VDC	От короткого замыкания в нагрузке								
Электрическая прочность	1500 VAC (первичная – вторичная обмотка), 1500 VAC (первичная обмотка – земля), 500 VAC (вторичная обмотка – земля)								
Сопротивление изоляции	более 5 МОм (входы/выходы по отношению к земле при 500 VDC)								
Помехоустойчивость	ESD (IEC 61131-2, IEC 61000-4-2): 8 кВ воздушный разряд EFT (IEC 61131-2, IEC 61000-4-4): линия питания 2 кВ, цифров. входы/выходы 1 кВ; аналоговые и коммуникационные порты 1 кВ; RS (IEC 61131-2, IEC 61000-4-3): 26 МГц ~ 1 ГГц, 10 В/м								
Заземление	Диаметр заземляющего проводника должен быть не менее, чем проводников питания L, N. (Если одновременно подключено несколько ПЛК, убедитесь, что они все заземлены индивидуально)								
Окружающая среда	Работа: 0° С 55° С; 50 95 % влажности; степень загрязненности 2 Хранение: -25° С 70° С; 5 95 % влажности								
Вибро-/ударопрочность	IEC61131-2, IEC 68-2-6 (TEST Fc)/ IEC61131-2 и IEC 68-2-27 (TEST Ea)								
Вес (гр.) реле/транзист.	192/180	202/185	212/190	275/240	290/250	510/450			

Характеристики входов (Х)


Тип входов		Дискретные				
Тип входного сигнала		Сигнал 24 VDC по PNP или NPN логике с общей точкой S/S				
Входное напряжение, ток		24 VDC, 5mA				
Активный	Переход с Выкл. на Вкл.	свыше 15 VDC				
уровень	Переход с Вкл. на Выкл.	ниже 5 VDC				
Время	Переход с Выкл. на Вкл.	X0, X1: 25 мкс; X2 ^{#1} : 50 мкс				
отклика	Переход с Вкл. на Выкл.	X0, X1: 10 мкс; X2 ^{#1} : 20 мкс				
Фильтр		Регулируется от 0 до 20 мс в D1020 (по умолчанию 10мс)				

Характеристики выходов (Y)

Тип выходов		Реле - R	Транзисторы - Т		
Рабочее напряжение		< 250VAC, 30VDC	5 30VDC #2		
Максимальн. нагрузка	Резистивная	2A/1 точка (5A/COM)	0.5А/1 точка (2А/СОМ)		
	Индуктивная	#3	12BT (24VDC)		
	Лампы	20Вт DC/100Вт AC	2Вт (24VDC)		
Время	Переход с Выкл. на Вкл.	TDIN 10 MG	30 мкс		
отклика	Переход с Вкл. на Выкл.	прим. 10 мс	350 мкс		


Примечания.

- #1. См. «Расположение клемм входов/выходов» для каждой модели.
- #2. Терминалы UP, ZP должны быть подключены к внешнему дополнительному источнику питания 24VDC (- $15\% \dots + 20\%$), ном. потребляемый ток прим. 1мA на 1 точку.
- #3. Ресурс релейных выходов при различных токах нагрузки:

Установка контроллера

Устанавливайте контроллер в защищенном от внешнего воздействия месте (в электрошкафу или другой оболочке) с достаточным пространством вокруг контроллера для отвода тепла - не менее 50 мм с каждой стороны, как показано на рисунке:

1. Монтаж на DIN-рейку

Контроллер можно установить на стандартную DIN-рейку 35 мм. При монтаже необходимо использовать концевые заглушки, чтобы избежать самопроизвольного перемещения контроллера по рейке. В противном случае может нарушиться целостность контактов. Для

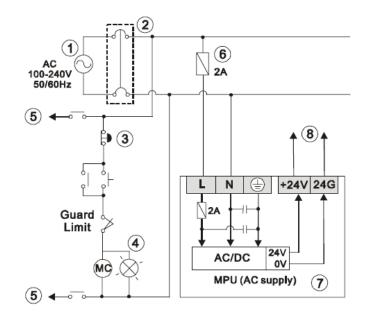
фиксации на рейке используйте пластиковую клипсу на тыльной стороне контроллера, которую необходимо несильным движением защелкнуть вверх. Для демонтажа контроллера с рейки необходимо передвинуть клипсу вниз и снять контроллер с рейки.

2. Монтаж на панель

Для монтажа на панель необходимо использовать винты M4.

• Подключение

- Подключение осуществляйте только гибкими медными проводами (60/75°C) сечением 0.2 ... 3 мм². Затяжное усилие 3.8 кг/см.
- Ничего не подключайте к пустым клеммам (обозначены точкой). Не размещайте входные сигнальные провода вместе с силовыми выходными проводами и проводами питания.
- Не допускайте попадания металлических предметов и стружки внутрь контроллера. При установке удалите транспортировочную пленку с корпуса контроллера. В противном случае не будет осуществляться должное охлаждение.


Источник питания

Контроллеры типа ЕСЗ запитываются переменным напряжением и перед подключением его убедитесь в следующем:

- 1. Напряжение питания находится в диапазоне 100 ... 240 VAC. Питание должно быть подключено к клеммам «L» и «N». Подача переменного напряжения на клеммы 24V или входы приведет к серьезному повреждению контроллера!
- 2. Для заземления используйте провод диаметром не менее 1,6 мм.
- 3. Отключение питания менее, чем на 10 мс, не приведет к остановке контроллера. При пропадании питания более, чем на 10 мс, контроллер перейдет в режим СТОП, а все выходы перейдут в состояние ВЫКЛ. При восстановлении питания контроллер автоматически перейдет в режим РАБОТА. При программировании необходимо учесть, что данные в энергонезависимых регистрах при пропадании питания будут сохраняться.
- 4. Максимально допустимая нагрузка на встроенный источник питания 24 VDC для каждой модели указана в спецификации. Каждый вход требует для своей работы порядка 5-7 мА. Следовательно, 16 входов потребуют порядка 100 мА для своей работы. Внутренний источник категорически запрещается объединять с другими источниками питания и вообще подавать какое-либо внешнее напряжение на его клеммы (+24V и 24G).

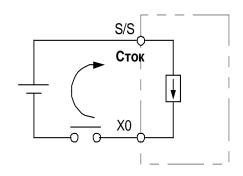
Безопасная схема подключения питания

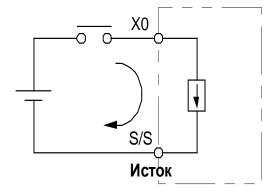
Контроллер управляет многими устройствами в единой системе управления. Каждое устройство оказывает свое влияние на соседние устройства и нарушения в работе одного приведет к цепной реакции и выходу из строя системы управления в целом или ее части. В связи с этим необходимо принять меры, которые позволят обезопасить контроллер от воздействий из внешней среды. На нижеприведенной схеме приводится один из возможных вариантов безопасного подключения контроллера во внешнюю цепь.

- (1) Источник электропитания: 100 ~ 240VAC, 50/60Гц
- (2) Электромагнитное реле или контактор. Данное устройство позволяет отключить цепь в случае сильных колебаний напряжения сети.
- (3) Аварийное отключение. Данной кнопкой можно отключить силовую цепь в случае чрезвычайной ситуации.
- (4) Индикатор наличия питания в силовой цепи.
- (5) Нагрузка цепи электропитания.
- (6) Плавкий предохранитель для защиты в силовой цепи (2A).
- (7) Центральный процессорный модуль ПЛК ЕС3.
- (8) Вторичный источник питания: 24В постоянного тока.

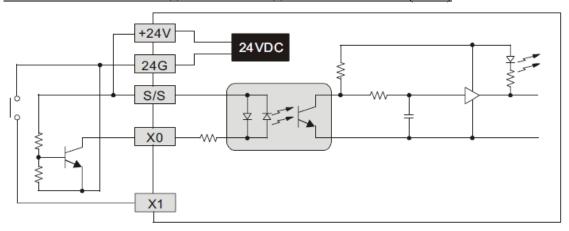
Подключение дискретных входов/выходов

У контроллеров входы являются оптоизолированными и позволяют протекать току в обоих направлениях. В связи с этим существует два принципиальных способа подключения входов контроллера – по PNP или NPN логике в пределах одной общей точки (S/S).

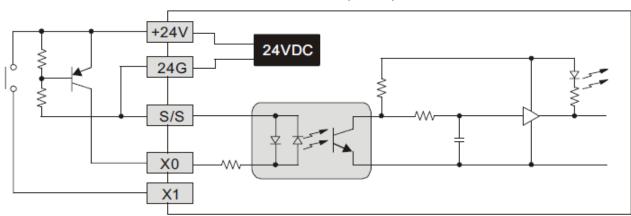

При подключении по логике PNP к общей точке S/S подводится «минус» источника питания, например подключаемых к контроллеру датчиков, а на выходе датчиков соответственно коммутируется «плюс» (как правило, это черный провод).

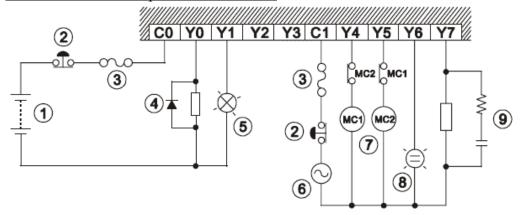

При подключении по логике NPN к общей точке S/S подводится «плюс» источника питания датчиков, а на выходе датчиков соответственно коммутируется «минус» (в трехпроводных датчиках это, как правило, также черный провод).

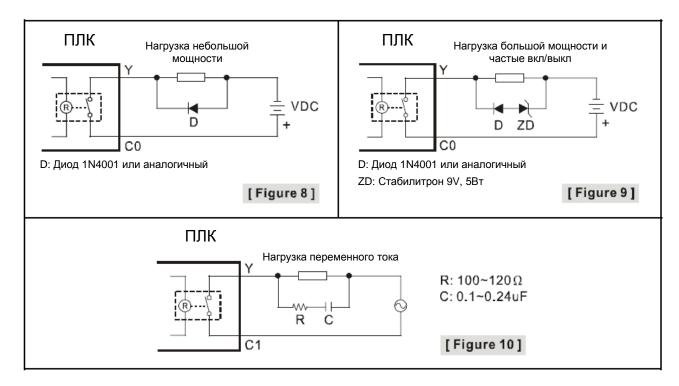
Выходы датчиков подключаются к клеммам X0, X1, X2...Xn.

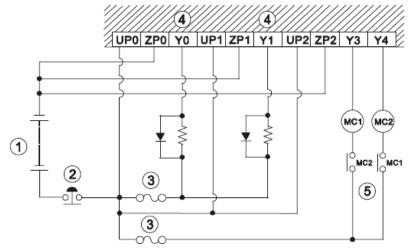

Срабатывание входа контроллера происходит при замыкании токовой цепи:

- ▶ при логике PNP: «плюс» источника питания датчик (кнопка) входная клемма контроллера Xn оптрон (светодиод начинает светиться) общая точка S/S «минус» источника питания. При данной логике подключения ток из общей точки S/S как бы «вытекает или истекает» к «минусу» источника питания. Поэтому данная схема получила название «Истоковой», по англ. SOURCE.
- ▶ при логике NPN: «плюс» источника питания общая точка S/S оптрон (светодиод начинает светиться) входная клемма контроллера Xn датчик (кнопка)— «минус» источника питания. При данной логике подключения ток от «плюса» источника питания как бы «втекает или стекает» к общей точке S/S. Поэтому данная схема получила название «Стоковой», по англ. SINK.




Эквивалентная схема подключения входов по NPN логике (Сток):


Эквивалентная схема подключения по PNP логике (Исток):


Схема подключения релейных выходов:

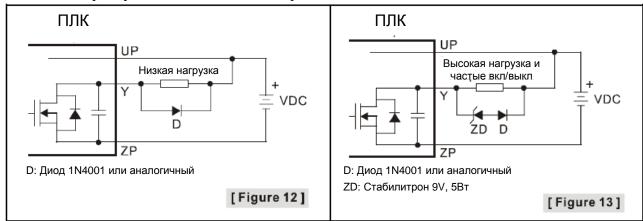
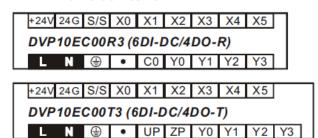

- (1) Источник питания постоянного тока
- (2) Аварийное отключение. Используется внешняя кнопка (выключатель)
- (3) Плавкий предохранитель: 5 ... 10 А со стороны общей точки для защиты выходной цепи
- (4) Ограничитель переходного напряжения (для продления срока службы контактов реле на постоянном токе):
 - а. Обратный диод (D), применяемый при небольшой мощности DC нагрузки (см. Figure 8);
 - b. Обратный диод (D) + стабилитрон (ZD), применяемый при значительной мощности DC нагрузки и частых включениях/выключениях (см. Figure 9).
- (5) Лампа накаливания (резистивная нагрузка).
- (6) Источник питания переменного тока
- (7) Выходы, управляемые вручную. Совместно с программой ПЛК организуют взаимную блокировку для исключения одновременного включения.
- (8) Неоновая лампа.
- (9) RC цепочка: для снижения помех и продления срока службы контактов реле на переменном токе (см. Figure 10).

Схема подключения транзисторных выходов:



- (1) Источник питания постоянного тока.
- (2) Аварийное отключение. Используется внешняя кнопка (выключатель).
- (3) Защитный плавкий предохранитель.
- (4) Если выходы Y0/Y1 используются в импульсном режиме, выходной ток должен быть от 0.05A до 0.5A для гарантированной работы транзистора, и с использованием ограничителей переходного напряжения:
 - а. Обратный диод (D), применяемый при небольшой мощности DC нагрузки (см. Figure 12);
 - b. Обратный диод (D) + стабилитрон (ZD), применяемый при значительной мощности DC нагрузки и частых включениях/выключениях (см. Figure 13).
- (5) Выходы, управляемые вручную. Совместно с программой ПЛК организуют взаимную блокировку для исключения одновременного включения

• Расположение клемм входов/выходов и питания

DVP10EC00R3/T3

•	D	/P1	41	=	\cap)	R3	/	Г3
•	-	/	4	_		N	-1	/	•

+24V 24G S/S X0 X1 X2 X3 X4 X5 X6 X7

DVP14EC00R3 (8DI-DC/6DO-R)

L N 😩 • C0 Y0 Y1 Y2 Y3 C1 Y4 Y5

DVP16EC00R3/T3

+24V 24G S/S X0 X1 X2 X3 X4 X5 X6 X7 D+ D- SG

DVP16EC00R3 (8DI-DC/6DO-R)

L N ⊕ • C0 Y0 Y1 Y2 Y3 C1 Y4 Y5 Y6 Y7

+24V 24G S/S X0 X1 X2 X3 X4 X5 X6 X7 D+ D- SG

DVP16EC00T3 (8DI-DC/6DO-T)

L N 😩 • UP ZP Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

DVP24EC00R3/T3

+24V 24G S/S X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 D+ D- SG

DVP24EC00T3 (12DI-DC/12DO-T)

L N 🕒 • UP0 ZP0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 UP1 ZP1 Y10 Y11 Y12 Y13

DVP32EC00R3/T3

+24V 24G S/S X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

DVP32EC00R3 (16DI-DC/16DO-R)

L N 🖶 • C0 Y0 Y1 Y2 Y3 C1 Y4 Y5 Y6 Y7 C2 Y10 Y11 Y12 Y13

D+ D- SG

C3 Y14 Y15 Y16 Y17

+24V 24G S/S X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

DVP32EC00T3 (16DI-DC/16DO-T)

L N 😩 • UP0 ZP0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 UP1 ZP1 Y10 Y11 Y12

DVP60EC00R3/T3

L N 🖶 • S/S X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16	X17						
DVP60EC00R3 (36DI-DC/24DO-R)							
+24V 24G C0 Y0 Y1 Y2 Y3 C1 Y4 Y5 Y6 Y7 C2 Y10 Y11 Y12 Y13 C3 Y14 Y15	Y16						
X20 X21 X22 X23 X24 X25 X26 X27 X30 X31 X32 X33 X34 X35 X36 X37 X40 X41 X42	X43						
\Rightarrow							
Y17 C4 Y20 Y21 Y22 Y23 C5 Y24 Y25 Y26 Y27 D+ D-	SG						
L N 🖶 • S/S X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16	X17						
DVP60EC00T3 (36DI-DC/24DO-T)	\Rightarrow						
+24V 24G UP0 ZP0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 UP1 ZP1 Y10 Y11 Y12 Y13 Y14 Y15	Y16						
X20 X21 X22 X23 X24 X25 X26 X27 X30 X31 X32 X33 X34 X35 X36 X37 X40 X41 X42	X43						
\Rightarrow							
Y17 UP2 ZP2 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 D+ D-	SG						

• Пробный пуск

❖ Индикация при подаче питания на ЦПУ

После подачи питания индикатор POWER должен загореться зеленым цветом. Если после подачи питания индикатор не загорелся, то это означает, что внутренний источник питания перегружен. В данном случае необходимо отключить внешние устройства (датчики) от клемм +24V/24G и использовать для них отдельный источник питания.

Подготовка

- 1. Перед подачей питания на контроллер убедитесь в правильности подключения всех входов и выходов. Не допускайте появления переменного напряжения 220В на входах, а также закорачивания выходов, в противном случае контроллер может выйти из строя.
- 2. Если для программирования контроллера используется внешнее устройство убедитесь, что не мигает индикатор ERROR. Это означает, что программа правильная и контроллер ожидает перехода в режим РАБОТА.

***** Тестирование работы

- 1. Если индикатор ERROR не мигает, контроллер можно переводить в режим PAБОТА из программного пакета WPLSoft (или ISPSoft), установленного на ПК. При этом индикатор RUN должен непрерывно гореть. Если он не горит, это означает, что в контроллер не загружена рабочая программа.
- 2. Когда контроллер находится в режиме PAБОТА, используйте программный пакет WPLSoft (или ISPSoft) для мониторинга значений таймеров, счетчиков, регистров, перевода в состояние ВКЛ/ВЫКЛ выходов. Если в режиме PAБОТА загорится постоянным светом индикатор ERROR (не моргает, а горит постоянно), это означает, что программа или ее часть вышла за установленный предел времени исполнения цикла или ожидания события. При возникновении подобной ситуации контроллер необходимо перевести в режим СТОП, затем считать значение специального регистра

D1004 и получить место нахождения ошибки в программе, которая привела к превышению установленного предела времени исполнения. Далее можно использовать инструкцию WDT (сторожевой таймер) для коррекции предела времени (если возможно) или изменить программу.

Примечание: расшифровку кодов ошибок можно посмотреть в «Руководстве по программированию», регистр D1004 в шестнадцатеричном формате.